
1.  Introduction
Numerical models have become essential tools for investigating biophysical processes in river ecosystems 
(Reeder et al., 2021) and informing decisions related to water resources management (Benjankar et al., 2018), 
and ecological conservation (Wheaton et al., 2018). Multi-dimensional numerical models provide a means of 
exploring interactions between flow fields, sediment transport, and river morphology in two or three dimensions 
(2D or 3D) (Shimizu et al., 2020). Models are widely used in aquatic habitat studies (Brown & Pasternack, 2009; 
Kammel et  al.,  2016; May et  al.,  2009; May & Pryor,  2016) and in process-based, bioenergetic analyses of 
flow-species interactions (Jowett et al., 2021). Multi-dimensional models are key tools in river restoration design 
(Brown, 2022) and also provide a means of quantifying morphodynamic processes in channels and riparian zones 
following restoration (Vargas-Luna et al., 2018).

The performance of 2D and 3D models is dependent on boundary conditions, and accurate bathymetric data are 
an essential requirement for numerical modeling (Pasternack, 2019). Recent advances in fluvial remote sens-
ing have enabled acquisition of continuous, high resolution bathymetric data (Carbonneau et al., 2012; Piégay 
et al., 2020), thereby facilitating development of ecohydraulic models at longer, river segment scales (Benjankar 
et al., 2019). Remote sensing provides an appealing alternative to traditional field-based surveying techniques, 
which are time consuming and generally limited to short, isolated reaches. However, while remote sensing can 
provide extensive, highly detailed bathymetric data, the errors inherent to these data might be larger than those 
associated with conventional field surveys. Thus, an important unresolved question is how errors in different 
types of remotely sensed bathymetry data influence the accuracy of ecohydraulic model predictions.
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Several approaches to acquiring continuous, high resolution topographic and bathymetric (topo-bathymetric) 
data are in common use. Airborne light detection and ranging (lidar) data, collected using near-infrared (NIR) 
wavelength (λ = 1,064 nm) lasers, are routinely used to measure terrestrial topography, such as river bars, banks, 
and floodplains (Mandlburger et al., 2015). NIR lidar data have become the standard for mapping topographic 
surfaces, with vertical accuracy on the order of a few cm (Passalacqua et al., 2015). Bathymetric lidar sensors, 
which use green wavelength (λ = 532 nm) lasers, have been successfully used to map submerged bathymetry on 
small to medium rivers with decimeter-scale accuracy (McKean et al., 2009; Tonina et al., 2018). On larger rivers, 
green lidar might be capable of measuring river bathymetry only up to a maximum detectable depth of ∼3 m 
(Lague & Feldmann, 2020). Lidar data have traditionally been obtained from airborne platforms but smaller, 
uncrewed aerial system (UAS) lidar sensors have emerged more recently (Kinzel et  al.,  2021; Mandlburger 
et al., 2020).

Spectrally based remote sensing provides another option for mapping water depths based on differences in the rate 
at which solar radiation of different wavelengths is attenuated by the water column. Spectrally based approaches 
have been used to map water depth using true color, multispectral, and hyperspectral imagery (Legleiter 
et al., 2009; Lyzenga, 1978; Winterbottom & Gilvear, 1997). This type of depth retrieval is best-suited to shal-
low, clear-flowing rivers with water depths up to approximately 2–3 m, but greater maximum detectable depths 
have been reported on certain larger rivers (Legleiter & Fosness, 2019). Conversely, spectrally based techniques 
cannot be applied to more turbid rivers due to limited penetration of light through the water column. Under appro-
priate conditions, passive optical approaches provide a means of estimating water depths that can be converted 
to bathymetry by subtracting the depth estimates from water surface elevations obtained from lidar sensors to 
produce hybrid, topo-bathymetric digital elevation models (DEMs) (Legleiter, 2021). Image-based bathymetric 
mapping has been conducted using airborne platforms (O’Sullivan et al., 2021) and satellites (Niroumand-Jadidi 
et al., 2018). Structure-from-Motion (SfM) photogrammetric techniques have also been used to infer water depth 
from images via small UAS (Dietrich, 2017; Woodget et al., 2015).

Both green lidar- and image-based bathymetry have been used as input for developing multi-dimensional flow 
models. Previous studies have demonstrated the ability to develop 2D models based on bathymetric lidar DEMs 
from a number of gravel-bed rivers, with errors comparable to models based on conventional field surveys 
(Mandlburger et al., 2015; McKean et al., 2014; Tonina et al., 2020). Similarly, spectrally based bathymetric 
DEMs have been used as input for 2D flow models for evaluating hydraulic habitat (Tamminga et al., 2015), exam-
ining braided river flow dynamics (Javernick et al., 2016), and to simulate channel morphodynamics (Williams 
et al., 2016). While previous studies have demonstrated the potential of remotely sensed data to support 2D model 
development, the majority of these studies have been conducted on small to medium-sized rivers and relatively 
little is known regarding the applicability of these approaches to larger rivers (100 m or wider). Furthermore, the 
potential for developing 3D models using remotely sensed bathymetry has not yet been tested.

From an ecological perspective, many populations of California's Pacific salmon (Oncorhynchus spp.) are crit-
ically endangered (Moyle et  al.,  2017). Their habitats are subject to numerous existential threats, including 
restricted access to historic habitats by water supply infrastructure, rising water temperatures, uncertain flows, 
and increasing human demand for water, all exacerbated by climate change (Crozier et al., 2019). In this context, 
accurate 2D and 3D numerical model evaluation of remaining riverine habitats is crucially important. Confidence 
in these assessments is contingent upon a quantitative understanding of how errors in the input bathymetric data 
propagate through a model and lead to errors in predictions of depth, velocity, and derived habitat variables.

Our research was organized around the following objectives:

1.	 �Evaluate the potential to develop 2D and 3D hydrodynamic models for a large gravel-bed river using river 
bathymetries derived from airborne hyperspectral, UAS-based hyperspectral, and multispectral satellite 
imagery as model input.

2.	 �Quantify model performance and compare errors in predicted salmon habitat quality metrics for each source 
of bathymetric information.
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2.  Materials and Methods
2.1.  Study Area

The Sacramento River is located in California's Central Valley and is the state's largest river, with a drainage area 
of 6.8 × 10 4 km 2. Flow in the upper Sacramento is regulated by Shasta and Keswick Dams and the mean annual 
discharge measured at the USGS streamgage (site no. 11377100) near Red Bluff, CA, is 357 m 3/s (U.S. Geolog-
ical Survey, 2022). These two dams are migration barriers for salmon and prevent access to historical habitat in 
upstream tributaries. Downstream of Keswick Dam the mainstem river is used by three populations of Chinook 
salmon listed under the Endangered Species Act (Moyle et al., 2017).

Winter-run Chinook salmon (Oncorhynchus tshawytscha) use the Sacramento River downstream from Keswick 
Dam to complete the freshwater portion of their life cycle (Moyle et al., 2017). The anadromous, winter-run 
life cycle consists of upstream migration of adults returning from the Pacific Ocean in January through May 
each year. Adult winter-run hold in deep pools with good cover for several months and typically spawn in pools 
between April and August. Winter-run fry emerge from gravel substrates in July through October and juveniles 
rear for approximately five to 10 months before migrating downstream toward the Pacific Ocean (Yoshiyama 
et al., 1998). The 50% exceedance flows between 1964 and 2021 at the USGS streamgage (site no. 11377100) 
near Red Bluff during spawning, rearing, and holding life stages were 326, 250, and 276 m 3/s, respectively (U.S. 
Geological Survey, 2022).

We focused on a 1.6 km reach of the Sacramento River near the confluence with Cottonwood Creek (Figure 1) 
that was the subject of a prior investigation on remote sensing of river bathymetry (Legleiter & Harrison, 2019a). 
Relative to areas farther upstream closer to Keswick Dam where water temperatures are generally cooler, winter-
run Chinook salmon redd densities are lower in this location. The study area features a large meander bend, 
with Cottonwood Creek entering from the right bank (i.e., from the west) near the bend apex (near cross section 
(XS) #6; Figure 1). This reach has a gravel bed with a median sediment grain size (D50) of 0.056 m, a D90 of 
0.097 m (Singer, 2008), and a slope of 0.00097 m/m. At the time of our field campaign in September 2017, the 
mean wetted width was 111 m and the mean depth was 1.77 m (Figure 2). The reach is characterized by deep, 
pool habitat along the upstream (XS # 1–3) and downstream portions of the reach (XS# 8–9). A channel width 
constriction near XS# 4 increases the flow velocity, resulting in fast, deep run habitat along the curved portion of 
the reach (XS# 4–7). Slow-shallow habitat exists along the channel margins, at the confluence with Cottonwood 
Creek, and in a small alcove located beyond the bend apex (XS# 8).

2.2.  Field Data

Field data collection and image acquisition occurred under low flow conditions, with a measured discharge 
of 260 m 3/s (U.S. Geological Survey, 2022). The discharge measured on Cottonwood Creek at USGS site no. 
11376000 was 1.6 m 3/s (U.S. Geological Survey, 2022), a negligible amount compared to the flow in the mainstem 
Sacramento River. The turbidity measured at the time the field-based and remotely sensed data were collected 
was 3.3 NTU (Legleiter & Harrison, 2019a). We measured water depths by wading shallow areas of the channel 
and using a jet boat in deeper portions of the river. For the wading surveys, we used Real-Time Kinematic Global 
Navigation Satellite System (RTK-GNSS) equipment to record water-surface elevations (WSE) along the edge 
of the wetted channel and bed elevations in shallow areas safely accessible from the bank. We calculated wading 
depths by subtracting each bed elevation measurement from the nearest WSE observation.

For the deeper portions of the channel, we measured water depth using a single-beam echosounder and also 
collected data on water depth and velocity with a SonTek S5 acoustic Doppler current profiler (ADCP). We 
deployed the echo sounder and ADCP from a jet boat and surveyed 10 cross sections (XS) (Figure 1), making 
4–10 passes across the channel at each XS. The ADCP was equipped with an integrated differential GPS with a 
horizontal accuracy of 0.15–0.2 m. We used the Velocity Mapping Toolbox (VMT) (Parsons et al., 2013) to: (a) 
project ADCP transects onto a grid with a horizontal and vertical spacing of 1 and 0.1 m, respectively; (b) rotate 
velocity data onto a common plane; and (c) smooth velocity ensembles using a nearest neighbor approach. In 
areas where the ADCP did not measure near-bed velocities reliably (the lowermost 10% of the flow depth), we 
fitted a logarithmic profile to the measured part of the flow field and projected from the lowermost valid velocity 
measurement to zero velocity at the bed.
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2.3.  Remote Sensing Data

We leveraged remotely sensed river bathymetry data from a previous study on the same reach (Legleiter & 
Harrison, 2019a) that evaluated the potential to map water depths using a generalized version of the Optimal 
Band Ratio Analysis (OBRA) framework introduced by Legleiter et al. (2009). This method uses ratios of spec-
tral bands to calculate an image-derived quantity X, defined as:

� = ln
[

�(�1)
�(�2)

]

,� (1)

Figure 1.  (a) Location of the Sacramento River in northern California, USA. (b) Oblique aerial image of the study reach, 
where the view is looking downstream from the top of the reach. (c) Field-based acoustic Doppler current profiler (ADCP) 
depth and (d) depth-averaged velocity measurements overlain on a hillshade image produced from lidar topography. Data 
sources in panel (a) include Esri, Garmin, GEBCO, NOAA, and USGS.
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where R(λ1) and R(λ2) are reflectances recorded in numerator and denominator bands centered at wavelengths λ1 
and λ2, respectively. The OBRA algorithm uses paired observations of depth and R(λ) to calculate X values for all 
possible band combinations and then regresses X against depth for each version of X. The optimal band ratio is 
taken to be that λ1 and λ2 pair that produces the highest coefficient of determination R 2.

Legleiter and Harrison (2019a) used OBRA to map water depths from hyperspectral data collected from piloted 
and uncrewed aircraft and a multispectral satellite image. The airborne hyperspectral data were acquired with 
a Compact Airborne Spectrographic Imager (CASI) 1500H (ITRES,  2014) deployed on a Cessna Caravan. 
The UAS-based hyperspectral image was acquired from a DJI Matrice 600 UAS equipped with a compact 
Nano-Hyperspec (Nano) imaging system (Headwall Photonics, 2018). The multispectral image was acquired by 
the WorldView-3 (WV3) satellite. The airborne hyperspectral (CASI), UAS hyperspectral (Nano), and satellite 
multispectral (WV3) data had native image pixel sizes of 0.5, 0.18, and 1.36 m, respectively. Previous OBRA 
results from this reach indicated that the airborne hyperspectral imagery provided the most accurate depths, 
followed by the UAS hyperspectral, and then satellite multispectral (Legleiter & Harrison, 2019a), with depth 
errors of 14%, 16%, and 19% of the mean depth, respectively (Table 1). Legleiter and Harrison (2019a) compared 

Figure 2.  Histogram and summary statistics for measured water depth data.

Sensor Data type Height (km) Pixel size (m) Bands Wavelengths (nm) Depth RMSE (%)

CASI 1500H Airborne hyperspectral 1 0.5 48 373–1,043 14

Nano-Hyperspec UAS-based hyperspectral 0.12 0.18 276 396–1,005 16

WorldView-3 Satellite multispectral 617 1.36 8 400–954 19

Note. Optimal Band Ratio Analysis (OBRA) depth RMSE values based on Legleiter and Harrison (2019a).

Table 1 
Summary of Remote Sensing Data and Depth Retrieval Errors
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several different formulations of the X versus depth relation and in this study we followed their recommendation 
to produce depth maps using an exponential function.

In this study, we generated hybrid, topo-bathymetric DEMS for each imagery data set via the following workflow. 
We used an airborne NIR lidar DEM of the entire reach to obtain elevations on dry land and the water surface. We 
then subtracted image-based depth estimates from the water surface to convert depths to bed elevations and fused 
these points with the lidar data to make a continuous DEM. This process was repeated for the airborne hyper-
spectral, UAS hyperspectral and satellite multispectral datasets, resulting in three different DEMs, each with a 
resolution of 1 m. The field and remotely sensed data used in this study are available from USGS data releases 
(Legleiter & Harrison, 2019b; Legleiter & Harrison, 2022).

2.4.  Hydrodynamic Modeling

We used the Delft3D-Flexible Mesh (Delft3D-FM) model developed by Deltares (2022) to predict 2D and 3D 
flow hydraulics in the study reach for each of the three source bathymetries. Delft3D is one of the most widely 
used models to simulate 2D and 3D hydrodynamics (Kasvi et al., 2015; Schuurman et al., 2018; Wegscheider 
et al., 2021; Wheaton et al., 2018; Williams et al., 2016). Delft3D-FM solves the Reynolds averaged Navier–
Stokes (RANS) equations using a finite-volume method. We used a curvilinear grid with a cell size of 1 m. For 
the 2D models, we included a spiral flow parameter, which accounts for the effects of secondary flow induced by 
streamline curvature. For the 3D models, the vertical grid was divided into 10 σ-layers that followed the bottom 
topography and free surface. Each σ-layer represented 10% of the flow depth. We set the time step to ensure a 
Courant number less than 0.7 (Deltares, 2022), and specified a minimum depth for wetting/drying calculations 
of 0.05 m.

The models require specification of the upstream discharge, downstream stage, flow resistance, and turbulence 
closure scheme. We prescribed an upstream discharge of 260 m 3/s and ran steady flow simulations. The flow 
resistance was defined using a uniform roughness height, ks, which was converted to spatially explicit Chezy C 
coefficients via the Colebrook-White equation:

𝐶𝐶 = 18𝑙𝑙𝑙𝑙𝑙𝑙
12𝐻𝐻

𝑘𝑘𝑠𝑠

,� (2)

where H is the water depth (m) and ks is the Nikuradse roughness height (m). The roughness height, ks, is 
commonly calculated as the product of a multiplicative factor, αs, and a representative bed sediment grain size 
diameter, Dx:

𝑘𝑘𝑠𝑠 = 𝛼𝛼𝑠𝑠𝐷𝐷𝑥𝑥,� (3)

Here, we defined Dx to be D90 (0.097 m), which represents sediment grains that protrude into the flow. A wide 
range of roughness height values have been reported in the literature (García, 2008). We performed a sensitivity 
analysis on the 2D models by varying the bed roughness between approximately 0.5D90 and 1.5D90. Results from 
this analysis indicated that a ks value of 0.12 m (αs ≈ 1.2) provided the best agreement between measured and 
modeled depths and we adopted this value for both 2D and 3D models. We used the same reach-averaged ks value 
for all models in order to quantify the error associated with each bathymetry, based on grain size data collected 
400 m from our study reach by Singer (2008). We acknowledge that using a single reach-averaged ks value does 
not capture local-scale sediment patches, which can influence flow hydraulics (Tonina et al., 2020). However, 
collecting such patch-scale bed surface grain size data in the Sacramento River during our field campaign was 
not feasible.

To account for turbulence in the 2D model, we used a uniform eddy viscosity. We evaluated the model's sensitivity 
to this parameter by varying the eddy viscosity between 0.1 and 1 m 2/s and found that a value of 1 m 2/s provided 
the closest agreement with measured velocities. While this value is high it is within the range of values reported 
in the literature for Delft3D-FM models (Barrera Crespo et  al.,  2019; Martyr-Koller et  al.,  2017; Willemsen 
et al., 2022). The specified eddy viscosity value maintained model stability and successfully reproduced the flow 
fields. For the 3D model, turbulence was represented using a κ−ϵ turbulence closure model (Deltares, 2022).
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2.5.  Accuracy Assessment

We used the calibrated 2D and 3D models to predict water depth and velocity for each bathymetry source and 
compared measured and modeled values. We used a channel-centered, orthogonal curvilinear (s, n) coordinate 
system for both the model output and ADCP transect data in order to facilitate comparison between observed and 
predicted hydraulic quantities in the streamwise and cross-stream directions. Hydrodynamic model performance 
was evaluated based on depth and velocity errors, ϵ(s), calculated as:

𝜖𝜖(𝐬𝐬) = 𝑃𝑃𝑓𝑓 (𝐬𝐬) − 𝑃𝑃𝑚𝑚(𝐬𝐬),� (4)

where Pf(s) is a field-surveyed parameter depth or velocity and Pm(s) is modeled depth or velocity at location 
s. A positive error, ϵ(s) > 0, indicates the depth or velocity measured in the field was higher than the modeled 
value and water depth or velocity was underestimated. Conversely, a negative error, ϵ(s) < 0, indicates the field 
measurement was lower than the modeled value and depth or velocity was overestimated. The magnitude and 
spatial organization of these errors were examined using summary statistics, regression analyses, and residual 
maps. To assess model bias, we calculated the mean error (ME) and the mean absolute error (MAE). Similarly, 
we characterized model accuracy in terms of the standard deviation (SD) of the errors and the root mean square 
error (RMSE). We also calculated several commonly used salmon habitat metrics for each source bathymetry 
and compared these to measured values computed from the ADCP data. In order to examine differences between 
model predictions provided by each of the source bathymetries, we also compared the differences in modeled 
depth and velocity between the: (a) airborne hyperspectral minus the UAS hyperspectral; (b) airborne hyperspec-
tral minus the satellite multispectral, and (c) UAS hyperspectral minus the satellite multispectral.

2.6.  Habitat Models

Salmon inhabit different types of hydraulic conditions at different stages of their life history, and empirical 
data regarding these preferences have been used to construct suitability metrics. Mechanistic models of salmon 
behavior have also been used to examine salmon activities such as feeding and resting (Hafs et al., 2014; Hayes 
et  al.,  2007), as well as migration (Olivetti et  al.,  2021). To evaluate how different bathymetries influenced 
modeled salmon habitat and bioenergetic calculations, we compared predicted values of winter-run Chinook 
salmon spawning and rearing habitat, and adult salmon holding costs to values derived from our ADCP meas-
urements. While we have presented two classes of habitat related metrics here for illustration, additional metrics 
appropriate to other fish species or forms of aquatic life could be evaluated in a similar manner.

2.6.1.  Spawning Habitat

We used 2D flow simulations to quantify habitat suitability for spawning winter-run Chinook salmon. Spawning 
habitat quality was predicted on the basis of resource selection functions (RSF) developed for Sacramento River 
winter-run by Dudley et al. (2022); depth and velocity RSF are shown as blue lines in Figure 3. We used the 
temperature-independent RSF (Equation 3 in Dudley et al. (2022)), which calculates spawning habitat quality 
based on water depth and velocity using logistic regression. We used modeled depth and velocity to calculate 
spawning habitat RSF values between 0 and 1 for each cell of the model grid.

2.6.2.  Rearing Habitat

We used 2D habitat suitability simulations to quantify winter-run Chinook salmon juvenile rearing habitat. The 
juvenile rearing habitat suitability model was based on depth and velocity habitat suitability curves developed in 
the Sacramento River for winter-run Chinook salmon (USFWS, 2005) (green dotted lines in Figures 3a and 3b). 
We used modeled values of depth and velocity to calculate dimensionless depth (DHSI) and velocity (UHSI) habitat 
suitability indices at each model grid cell. We then produced combined habitat suitability indices (CSI), calcu-
lated as 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 = (𝐷𝐷𝐻𝐻𝐻𝐻𝐻𝐻 )

0.5
(𝑈𝑈𝐻𝐻𝐻𝐻𝐻𝐻 )

0.5 , where the combined CSI predictions had values between 0 and 1, with 1 
being the highest quality habitat (Gard, 2014).



Water Resources Research

HARRISON ET AL.

10.1029/2022WR033097

8 of 20

2.6.3.  Holding Habitat

Adult holding costs quantify the amount of energy a fish must expend to maintain position at a given location 
in the river before spawning. We equate the holding cost with the metabolic rate of an adult fish while holding, 
which is calculated as:

𝐸𝐸 = 𝜂𝜂𝜂𝜂𝜅𝜅𝑒𝑒𝜇𝜇𝜇𝜇 𝑒𝑒𝛽𝛽𝛽𝛽,� (5)

where E is the metabolic rate (J/d); M is the fish mass (g); T is the water temperature (12°C); u is the water veloc-
ity (m/s); and η, κ, μ, and β are parameters fitted on the basis of metabolic data. To estimate these parameters, we 
fit Equation 5 to metabolic rate data from five studies (Brocksen & Bailey, 1973; Cech & Myrick, 1999; Geist 
et al., 2003; Rombough & Ure, 1991; Thorarensen & Farrell, 2006). If length to mass conversion was necessary, 
we used the standard length to mass formula (M = aL b) fitted with data from four studies (Chapman et al., 2013; 
Kimmerer et al., 2005; MacFarlane & Norton, 2002; Michel et al., 2013), where L is the fish length, and a and b 
are fitted parameters. Values of the fitted parameters used in this study were η = 70.9 J/d, κ = 0.88, μ = 0.0157 
1/°C, and β = 0.0112 s/m.

Adult salmon can maintain position in velocities up to approximately 1.7 m/s, which can be viewed as an upper 
velocity limit for salmon during swimming activities (Geist et al., 2003). Based on a maximum swimming veloc-
ity of 1.7 m/s, combined with a mean fish length of 74.6 cm for winter-run Chinook salmon on the Sacramento 
River (Poytress, 2016), we calculated the maximum metabolic cost to be 15 J/s. We assumed that sections of the 
river with metabolic costs greater than 15 J/s were unsuitable for holding.

We compared habitat metrics calculated from the ADCP data to modeled habitat values to evaluate the degree 
to which errors in modeled depth and velocity propagated into habitat predictions. The spawning and rearing 
curves used in this study were developed using measurements of the total water depth, H, and depth-averaged 
velocity. Therefore, for the measured versus predicted spawning and rearing habitat assessment, we compared 
depth-averaged velocities measured by the ADCP with those predicted by 2D models. The bioenergetic holding 
costs can be used to relate fish energy expenditure to point velocities, which allowed us to compare the holding 
costs calculated from the ADCP measurements to both the 2D and 3D model-based holding cost estimates.

3.  Results
3.1.  Hydrodynamic Model Performance

3.1.1.  Modeled Depth

We found that the water depths predicted using the 2D and 3D models were virtually identical to each other 
(Figure 4 and Table 2). The most accurate depths were provided by the airborne hyperspectral sensor, which had 

Figure 3.  Winter-run Chinook salmon spawning and rearing (a) depth, (b) velocity, and (c) adult holding habitat curves. Spawning habitat preference curves were 
based on Dudley et al. (2022). The shading in panels (a) and (b) represent the range of measured depths and velocities present at the study site. We used a fish length of 
74.6 cm (Poytress, 2016) in the metabolic holding cost estimates shown in panel (c), where the orange and red lines denote suitable and unsuitable holding velocities, 
respectively.



Water Resources Research

HARRISON ET AL.

10.1029/2022WR033097

9 of 20

2D and 3D model RMSE values of 0.24 m, equivalent to ∼14% of the mean depth (Figures 4a and 4d). 2D and 
3D model results obtained from the UAS hyperspectral bathymetry had lower accuracy, with RMSE values of 
0.29 m (17% of the mean) (Figures 4b and 4e). The 2D and 3D models developed using satellite multispectral 
data had the lowest accuracy (RMSE = 0.35 m; 19% of the mean), with greater scatter about the regression line 
(Figures 4c and 4f). Each of the models tended to underestimate depths in water deeper than approximately 3 m, 
which accounted for ∼4% of the measured depths. The UAS hyperspectral data had the strongest bias with a mean 
error of 0.1 m (6% of the mean), while models developed using the airborne hyperspectral and satellite multispec-
tral bathymetries had mean errors close to zero (<1% of the mean depth).

We also examined spatial patterns in observed versus predicted depths throughout the reach. Figure 5 shows the 
modeled depths for each of the source bathymetries. Due to the similarities in predicted depths between the 2D 
and 3D models, we only provide examples from 2D models for illustration; depth error summary statistics for 2D 
and 3D models are provided in Table 2. In general, modeled depths showed a similar spatial pattern for all three of 
the source bathymetries. The airborne and UAS hyperspectral data provided smoother modeled water depths, due 

Figure 4.  Measured versus modeled depth scatter plots for 2D (a–c) and 3D model simulations (d–f). The mean water depth was 1.77 m (n = 19, 024).

Sensor Airborne hyperspectral UAS hyperspectral Satellite multispectral

Model 2D 3D 2D 3D 2D 3D

Mean error (%) −0.1 −0.4 5.4 5.5 0.6 0.6

Standard deviation (%) 13.5 13.5 16.0 16.0 19.1 19.1

Mean absolute error (%) 10.4 10.5 12.2 12.3 13.6 13.6

RMSE (%) 13.5 13.5 16.9 16.9 19.1 19.1

OP R 2 0.86 0.86 0.82 0.82 0.72 0.72

OP slope 1.08 1.08 1.15 1.15 1.05 1.04

OP intercept −0.15 −0.15 −0.15 −0.14 −0.07 −0.06

Note. OP = observed versus predicted.

Table 2 
Modeled Depth Error Summary Statistics
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to the combined effects of higher spatial resolution, greater spectral detail, 
and possibly finer radiometric resolution, all of which led to improved depth 
retrieval. For the satellite multispectral images, in contrast, the depth maps 
were more pixelated due to the coarser spatial resolution (1.36 m), reduced 
spectral detail, and possibly lower radiometric resolution. Each of the models 
was able to capture the shallow depths occurring on the right side of the 
river at the upstream end of the reach between XS# 1–2 and over the shallow 
point bar located along the left bank near XS# 6 (Figures 5a–5c). The largest 
depths occurred in pools located at the upstream end of the reach (XS# 1–3) 
and downstream from the bend apex (XS# 8–9). The airborne hyperspectral 
and satellite multispectral data both captured the deeper pools while the UAS 
hyperspectral data tended to underestimate pool depths, particularly for the 
upstream pool (Figure 5).

The depth errors, ϵ(s), calculated as field-surveyed minus predicted depths, 
are provided in Figures 5d–5f for each of the ten cross-sections. Each of the 
models over-predicted water depths at XS# 4 near the channel constriction, 
indicated by the negative depth error shown in the red shading. Model depths 
were underestimated in the deepest portions of the pools located beyond 
the bend apex (XS# 9–10), indicated by the blue points in the depth error 
maps. We observed larger depth residuals near channel banks in the satellite 
multispectral supported model (XS# 6–7).

Maps of modeled depth differences between the airborne and UAS hyper-
spectral data indicated that these two source bathymetries provided similar 
depth predictions, with the airborne hyperspectral data leading to slightly 
greater pool depths, as indicated by the blue shading in Figure  5g. Simi-
lar maps representing the predicted depth difference between the airborne 
hyperspectral and satellite multispectral showed that the multispectral model 
predicted greater depths than the model based on airborne hyperspectral data 
in the upstream pool and along the right bank of the meander bed, highlighted 
by the red shading in Figure  5h. The UAS hyperspectral model predicted 
shallower depths than the satellite multispectral data in the upstream pool 
and outer bank of the meander bend, denoted by the red shading in Figure 5i.

3.1.2.  Modeled Velocities

Predicted depth-averaged velocities from the 2D model are provided 
in Figure  6. Each of the models captured the main spatial patterns of the 
2D velocity field. Similar to the modeled depths, the UAS hyperspectral 
provided the smoothest predicted velocities, while velocities predicted from 
the satellite multispectral data were noisier (Figure 6). The 2D models each 
predicted low velocities in the upstream pool and flow acceleration as the 
channel width decreases due a flow constriction near XS# 4. A high veloc-
ity jet was evident through the meander bend, with the strength of the jet 
diminishing with distance downstream from the constriction. Low velocities 
occurred along the channel margins, near the confluence with Cottonwood 
Creek, and in a small alcove located on the right side of the river downstream 
from the bend apex near XS# 8 (Figures 6a–6c).

We found that errors, ϵ(s), between field-surveyed and predicted velocities 
were generally small, as indicated by the white shading in the velocity error 
plots (Figures 6d–6f). The most notable discrepancy between measured and 
modeled depth-averaged velocities was the underestimation of velocities near 
the channel constriction for all sensors, shown as blue colors in the velocity 

error plots at XS# 4 (Figures 6d–6f). The UAS hyperspectral and satellite multispectral data slightly overesti-
mated velocities in the downstream end of the reach, indicated by red colors in the velocity error maps at XS# 9 

Figure 5.  Predicted water depths obtained using Delft3D-FM 2D models 
for the (a) airborne hyperspectral, (b) UAS hyperspectral, and (c) satellite 
multispectral source bathymetries. Hydraulic modeling residuals, ϵ(s), 
calculated as field-surveyed minus modeled depths for the (d) airborne 
hyperspectral, (e) UAS hyperspectral, and (f) satellite multispectral data. 
Predicted depth difference maps for the (g) airborne minus UAS hyperspectral, 
(h) airborne hyperspectral minus satellite multispectral, and (i) UAS 
hyperspectral minus satellite multispectral data. Table 2 provides a depth error 
summary for both 2D and 3D models.
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and 10. The model developed using satellite multispectral data also underes-
timated velocities near the left bank at XS# 7, shown in dark blue colors in 
the velocity error plot (Figure 6f).

Maps illustrating the difference between velocities modeled based on the 
airborne and UAS hyperspectral data indicated that the source bathymetries 
generally provided similar velocity predictions, with the airborne hyper-
spectral data leading to slightly lower velocities (red shading in Figure 6g). 
Similarly, calculating the differences between velocity predictions based on 
the airborne hyperspectral and satellite multispectral showed that the model 
predicted slower velocities when using bathymetry derived from airborne 
hyperspectral data than when using the multispectral satellite data as input, 
particularly in the upstream and downstream pools (red shading in Figure 6h). 
Conversely, the blue shading in Figure 6h represents faster velocities from 
the airborne hyperspectral data compared to the satellite multispectral model 
along the point bar. The UAS hyperspectral predicted faster velocities than 
the satellite multispectral data along the point bar, denoted by the blue shad-
ing in Figure 6i.

We found generally good agreement between velocity magnitudes meas-
ured with an ADCP and those predicted with the 3D models (Figure 7). The 
airborne hyperspectral and UAS hyperspectral data were generally able to 
reproduce the vertical and cross-stream velocity variations and the location 
of the high velocity core (XS# 4, 6, and 8). The satellite multispectral data 
captured the main features of the velocity field but tended to underestimate 
velocities near the banks. Because neither the 2D nor the 3D RANS models 
resolve all scales of motion present within the flow, both models predicted 
flow fields that were smoother than those measured directly in the field. 
In addition, each of the models underestimated velocities at XS# 4, where 
the ADCP recorded velocities greater than 2  m/s throughout the majority 
of the water column (Figure 7b), while the 3D models tended to predict a 
more gradual velocity gradient with distance from the water surface down to 
the  riverbed at this transect location (Figure 7f, 7j, and 7n).

Our results indicated that depth-averaged velocity errors were similar between 
the 2D and 3D models (Table 3). The depth-averaged velocity RMSE values 
ranged from 11% to 16% of the mean velocity for the airborne hyperspectral, 
UAS hyperspectral, and satellite multispectral, respectively. The R 2 values 
were between 0.81 and 0.86 for the airborne hyperspectral and UAS hyper-
spectral data, whereas the satellite multispectral data led to R 2 values of 0.72 
and 0.73 for the 2D and 3D models, respectively.

The RMSE values for the near-bed velocity errors were similar between the 
2D and 3D models, with values between 14% and 17% of the mean near-
bed velocity for the airborne hyperspectral and UAS hyperspectral data 
and between 20% and 21% of the mean near-bed velocity for the satellite 
multispectral data. While the standard deviation and RMSE values were 
similar for near-bed velocity errors provided by 2D and 3D models, the 3D 
models tended to have less bias in the near-bed velocity predictions, with 
values between −3 and 2% of the mean near-bed velocity, compared to mean 
errors of 7%–10% of the mean near-bed velocity for the 2D models. The 
R 2 between measured and predicted near-bed velocities were between 0.77 
and 0.81 for the 2D and 3D airborne hyperspectral and UAS hyperspectral 
models, while the satellite multispectral data had R 2 between 0.63 and 0.69 
for the 2D and 3D models.

Figure 6.  Predicted depth-averaged velocities obtained using Delft3D-FM 
2D models for the (a) airborne hyperspectral, (b) UAS hyperspectral, and (c) 
satellite multispectral source bathymetries. Hydraulic modeling residuals, 
ϵ(s), calculated as field-surveyed minus modeled depth-averaged velocities 
for the (d) airborne hyperspectral, (e) UAS hyperspectral, and (f) satellite 
multispectral data. Predicted velocity difference maps for the (g) airborne 
minus UAS hyperspectral, (h) airborne hyperspectral minus satellite 
multispectral, and (i) UAS hyperspectral minus satellite multispectral data. 
Table 3 provides a velocity error summary for both 2D and 3D models.
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3.2.  Modeled Salmon Habitat

Predicted values provided by 2D models of winter-run Chinook salmon spawning, juvenile rearing, and holding 
habitats are shown in Figure 8. The spatial patterns of 2D modeled spawning habitat were similar between the 
three source bathymetries, with high-quality spawning habitat predicted in deep pools at both the upstream end 

Figure 7.  Measured and modeled 3D velocities for cross-sections # 2, 4, 6, and 8. The view is downstream and the cross-stream coordinate n is referenced to the 
centerline (n = 0), with larger negative (positive) values toward the right (left) bank. The location of each transect is provided in Figure 1.

Sensor Airborne hyperspectral UAS hyperspectral Satellite multispectral

Model 2D 3D 2D 3D 2D 3D

Depth-averaged velocity (m/s)

  Mean error (%) −0.8 −2.3 −4.7 −2.8 −1.9 1.6

  Standard deviation (%) 10.6 10.8 11.3 12.4 15.2 15.7

  Mean absolute error (%) 8.4 8.9 10.0 10.1 11.4 11.9

  RMSE (%) 10.7 11.1 12.2 12.7 15.3 15.8

  OP R 2 0.86 0.86 0.84 0.81 0.73 0.72

  OP slope 0.97 0.95 1.04 0.96 0.86 0.84

  OP intercept 0.03 0.05 −0.13 0.02 0.18 0.25

Near-bed velocity (m/s)

  Mean error (%) 9.5 0.9 6.9 −2.5 9.1 2.0

  Standard deviation (%) 14.1 14.3 15.6 14.2 17.5 20.4

  Mean absolute error (%) 12.5 10.7 12.7 11.3 14.9 15.4

  RMSE (%) 17.0 14.4 17.0 14.4 19.7 20.5

  OP R 2 0.81 0.80 0.77 0.80 0.69 0.63

  OP slope 1.14 0.95 1.19 1.00 1.02 0.79

  OP intercept −0.03 0.06 −0.09 −0.03 0.07 0.21

Note. Reach-averaged values of depth-averaged and near-bed velocities are 1.44 and 0.94 m/s, respectively.

Table 3 
Modeled Velocity Error Summary Statistics
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of the reach and downstream from the bend apex. These pools had depths 
typically greater than 1 m and velocities between 1 and 1.5 m/s, resulting in 
dimensionless spawning habitat quality values greater than 0.7, as indicated 
by the yellow and orange shading in Figures 8a–8c. Lower quality spawn-
ing habitat, shown in cool colors, occurred through the channel constric-
tion where the flow was shallower and faster, with velocities in excess of 
2 m/s. The slow-shallow channel margins and confluence region were also 
predicted to provide low-quality spawning habitat, represented by the blue 
shading in Figures 8a–8c.

High-quality juvenile rearing habitat predicted from 2D models was located in 
a backwater on the right bank downstream from the bend apex (Figures 8d–8f). 
This alcove had water depths less than 1 m and depth-averaged velocities 
below 0.15 m/s, resulting in modeled rearing CSI values greater than 0.7, 
indicated by the warm colors in Figures  8d–8f. Medium to high-quality 
juvenile rearing habitat was predicted near the confluence with Cottonwood 
Creek, indicated by the green and yellow shading in Figures  8d–8f. Very 
narrow zones of medium quality juvenile rearing habitat (CSI > 0.5) were 
predicted along channel margins, while the main river channel was predicted 
to provide low quality rearing habitat (cool colors in Figures 8d–8f), due to 
depth-averaged velocities in excess of 0.15 m/s throughout the majority of 
the mainstem channel.

The 2D modeled metabolic rates for fish holding (E) were predicted to be 
suitable for the majority of the pool habitats, as indicated by the orange colors 
in Figures 8g–8i. The channel constriction zone was predicted to be largely 
unsuitable as energy expenditures were predicted to exceed 15 J/s, indicated 
by the red and dark shading in Figures 8g–8i. The spatial extent of unsuitable 
holding habitat (white polygon in Figures 8g–8i) was similar between the 
three source bathymetries, though peak values of E were greatest for the UAS 
hyperspectral data. A small region of unsuitable holding habitat was also 
predicted near the downstream end of the reach, with the satellite multispec-
tral and UAS hyperspectral data predicting slightly larger unsuitable areas in 
this region compared to the airborne hyperspectral data.

The areal extent of 2D modeled spawning, juvenile rearing, and adult holding 
habitat was similar across the three source bathymetries (Figures 9a–9c). The 
airborne hyperspectral, UAS hyperspectral, and satellite multispectral models 
predicted that 56%, 55%, and 61% of the total area provided high-quality 
spawning habitat (>0.7). The airborne hyperspectral, UAS hyperspectral, and 
satellite multispectral models predicted that 3%, 3%, and 2% of the total area 
provided high-quality juvenile rearing habitat. The three models predicted 
that between 79% and 80% of the reach provided suitable holding habitat 
(<15 J/s).

The 2D modeled spawning habitat predictions had low errors with the major-
ity of errors within ±0.1 (Figure 9d). The airborne hyperspectral and UAS 
hyperspectral had the narrowest error distributions, while the multispectral 
satellite data had slightly larger spawning habitat errors. The juvenile rearing 

habitat errors were close to zero for all three sensors (Figure 9e). Holding cost errors were generally small for 
the airborne hyperspectral and UAS hyperspectral data, while the multispectral satellite had an error distribution 
with greater spread (Figure 9f). Note that while absolute values of the holding cost errors were larger than the 
spawning and rearing habitat errors (Figures 9d–9f), the spatial extent of suitable holding habitat (<15 J/s) was 
virtually identical across the three source bathymetries (Figures 8g–8i).

Figure 10 provides a comparison between measured and modeled 3D metabolic holding costs at cross-sections 
#2, 4, 6, and 8. Each of the source bathymetries predicted suitable holding habitat throughout the full water 

Figure 8.  Modeled 2D salmon (a–c) spawning habitat, (d–f) rearing habitat, 
and (g–i) metabolic holding costs. White contour lines in panels g–i represent 
areas predicted to exceed the maximum aerobic energy expenditure (15 J/s) of 
holding adults.
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column in the upstream pool at XS #2, consistent with values obtained from the ADCP. Measured metabolic 
holding costs at the constriction (XS #4) exceeded 15 J/s throughout most of the flow depth, with just a thin 
layer of suitable holding habitat near the channel bed. Modeled holding costs at XS #4 predicted a thickness of 
unsuitable holding habitat similar to that measured in the field, but the models estimated a thicker layer of suitable 

Figure 9.  Cumulative frequency distributions for spawning, holding and rearing habitat quality (a–c) and errors (d–f) predicted from 2D models.

Figure 10.  Comparison between measured and modeled 3D adult holding costs for cross-sections # 2, 4, 6, and 8. Areas above the white contour lines are predicted to 
exceed the maximum energy expenditure (15 J/s) of holding adults.
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holding habitat in the lower portion of the water column. The spatial pattern of holding costs was similar between 
the ADCP and modeled values near the meander bend apex (XS #6) and downstream pool (XS #8).

4.  Discussion
4.1.  Ecohydraulic Model Sensitivity to Remotely Sensed River Bathymetry

Our study provided the first evaluation of the potential for developing 2D and 3D computational fluid dynamics 
(CFD) models for a large, gravel-bed river using multiple, passive optical remotely sensed river bathymetries as 
model input. Our model accuracy assessment found that predicted water depth errors (RMSE) ranged from 14% 
to 19% of the mean depth, and R 2 values ranged from 0.72 to 0.86 (Table 2). Previous studies have reported 2D 
and 3D model errors generally below 20% of the mean depth or velocity and have R 2 values greater than 0.8 
(Tonina & Jorde, 2013). Using these benchmark values, the airborne hyperspectral and UAS hyperspectral source 
bathymetries satisfied accepted model validation standards, while the models developed from satellite multispec-
tral data provided lower accuracy predictions than previously published multi-dimensional modeling studies. The 
satellite multispectral imagery had lower spectral and spatial resolution than the airborne hyperspectral and UAS 
hyperspectral imagery, which created a more pixelated source bathymetry and contributed to larger bathymetric 
errors (Legleiter & Harrison, 2019a). Based on our evaluation of the three source bathymetries, we concluded 
that for rivers of similar width, depth, and clarity to the reach of the Sacramento River we examined, hyperspec-
tral sensors, whether deployed from piloted aircraft or UAS, appeared to have greater potential for parameterizing 
multi-dimensional flow models than the satellite multispectral imagery.

We found that errors in modeled water depth were comparable to the uncertainty in the input source bathymetry. 
Legleiter and Harrison  (2019a) reported depth error standard deviations of 14%, 15%, and 18% of the mean 
depth for the airborne hyperspectral, UAS hyperspectral, and satellite multispectral sensors, respectively. Using 
those same bathymetries as 2D and 3D model input, we observed modeled depth error standard deviations of 
∼14%, 16%, and 19% of the mean depth. Thus, the uncertainty in the image-based depth maps can provide a 
first-order estimate of the depth errors to be expected when using the remotely sensed bathymetry as input for 
multi-dimensional flow models. In a study of shallow, braided river flow dynamics, Javernick et al. (2016) found 
2D model depth errors of similar magnitude to the input bathymetric DEM they derived from optical imagery, 
consistent with our results for 2D and 3D models developed for a large river.

Our study suggested that the fine-scale microtopography captured by high resolution bathymetric data could be 
incorporated into the input DEMs used for hydraulic model development. Although Delft3D-FM does not include 
sub-element topography smaller than the grid dimensions (1 m 2 in this study), the high-resolution DEMs could 
partially account for form drag and thus require lower flow resistance values than many previously published 
studies. In a compilation of roughness height, ks, values from the literature, García (2008) reported αs values of 
2–3, whereas we found that an αs ≈ 1.2 provided the best agreement between measured and modeled depths. 
Previous multi-dimensional flow modeling studies using high resolution topography have obtained αs values 
in the range of 0.9–1.4 (Williams et al., 2013). Tonina et al. (2020) also report that high resolution topography 
captures much of the roughness of the streambed, thus requiring lower flow resistance values in 2D model 
development, which in their case were assigned using values of the Manning's n coefficient. Results from our 
study, in conjunction with previous modeling studies (Tonina et al., 2020; Williams et al., 2013), can be used to 
inform flow resistance parameterization in future modeling investigations using high resolution topo-bathymetric 
data. Our findings, in conjunction with previous work (Tonina et al., 2020; Williams et al., 2013), imply that as 
high-resolution topo-bathymetric datasets become more widely used to develop multi-dimensional flow models, 
conventional methods of estimating roughness values might need to be reevaluated.

Our results indicate that measured and modeled velocity fields were generally in good agreement, with errors of 
similar magnitude to previous modeling studies. Consistent with the results of our depth accuracy assessment, 
the airborne hyperspectral data provided the most accurate velocity predictions, followed by the UAS hyperspec-
tral and satellite multispectral data. Model errors for depth-averaged velocities were similar between the 2D and 
3D models, with a level of precision within the range of previously reported RMSE values, which are generally 
between 20% and 30% of the mean depth-averaged velocity (Pasternack & Senter, 2011). Regression analyses 
indicated that R 2 values for the depth-averaged velocities ranged from 0.81 to 0.86 for the airborne and UAS 
hyperspectral data but were less than 0.8 for the satellite multispectral data. By this metric, the model based on 
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satellite multispectral-derived bathymetry did not predict velocity as well as previous multi-dimensional mode-
ling applications. The poorer performance of models developed from satellite multispectral data was likely due to 
georeferencing issues, which were most evident near the channel margins. Near-bed velocities had similar RMSE 
values between 2D and 3D models, but the 3D models had less bias (i.e., mean errors smaller in magnitude) 
compared to measured near-bed velocities These results are consistent with previous studies which found that 
3D models outperformed 2D models in predictions of near-bed velocities (Kasvi et al., 2015; Lane et al., 1999).

We found that the most notable discrepancy between measured and modeled velocities occurred near the width 
constriction. Previous studies using image-based bathymetry to parameterize 2D models reported that the largest 
velocity errors occurred in shallow flows in braided anabranches with depths <0.25 m (Williams et al., 2013). 
McKean et al. (2014) and Tonina et al. (2020) also found higher velocity errors in shallow, fast riffles than in 
deeper areas with plane bed and pool morphologies when using 2D models developed from bathymetric lidar 
DEMs. While results from our study are generally consistent with previous work on small to medium-sized rivers 
using 2D models (McKean et al., 2014; Tonina et al., 2020; Williams et al., 2013), we observed the largest veloc-
ity errors in fast, deep run habitats, which are more common than fast, shallow riffle habitat on the Sacramento 
River. Although we did observe some discrepancies between measured and modeled flow fields, the source 
bathymetries we used had relatively small vertical errors overall. Therefore, some of the model error could also 
be attributed to inherent limitations of the 2D and 3D models and other aspects of their parameterization.

Modeled spawning and juvenile rearing habitat indices had low errors for each of the three sensors (Figure 9), 
despite observed errors in modeled depth and velocity. For example, the tendency of each of the models to 
underestimate the maximum pool depths did not have significant impacts on the spawning or rearing habitat 
quality predictions (Figure 8). This result could reflect the specific habitat requirements of winter-run Chinook 
salmon that spawn in deeper water than other salmon (Moyle et al., 2017), such as fall-run Chinook salmon, 
who typically spawn in shallow, fast transition zones between pools and riffles (Harrison et al., 2019). Juvenile 
winter-run Chinook salmon prefer slow (<0.15 m/s) water approximately 1 m deep (USFWS, 2005), such as the 
channel alcove located beyond the bend apex in our study reach. In this location, each of the models predicted a 
continuous patch of medium to high-quality habitat, demonstrating consistency between juvenile rearing habitat 
predictions provided by the three source bathymetries (Figure 8). Habitat suitability assessments for other species 
will vary depending on channel characteristics and species habitat preferences; results from other rivers thus 
could differ from those we obtained.

Predicted bioenergetic holding costs are calculated as a function of velocity and we found that modeled hold-
ing costs were sensitive to velocity errors (Figure 9f). The UAS hyperspectral and satellite multispectral data 
overestimated velocity in the lower portion of the reach near XS# 9–10 (Figure 6), resulting in a corresponding 
over-prediction of metabolic holding costs in this region (Figures 8h and 8i). Swimming migration costs, similar 
to holding costs, are often used to calculate the total energy expenditure of adult salmon from the beginning of 
upstream migration until spawning (Connor et al., 2019; Lennox et al., 2018). Potential migration cost errors 
could be significant when calculating the energy reserves remaining when the salmon reach their spawning 
grounds, which would affect efforts to model the amount of time a Chinook salmon could defend a redd and thus 
affect estimates of redd superimposition in spawning grounds. Our 3D modeling illustrated that metabolic costs 
varied with distance from the bed, and suitable holding habitat existed near the river bed even in swiftly moving 
river sections. The added vertical dimension provided by the 3D models is a clear advantage over 2D approaches 
for visualizing and quantifying species-habitat interactions and yields a more complete representation of the 
conditions experienced by migrating and holding fish.

4.2.  Practical Considerations in Using Remotely Sensed Bathymetry in Hydraulic Modeling Studies

Our study had several important limitations. For this study, we modeled a single discharge of 260 m 3/s, the flow 
observed during our field and remote sensing campaigns, which occurred at a time when we could safely wade 
the shallow margins of the channel and operate a jet boat within the Sacramento River. The discharge we simu-
lated was approximately 80%, 104%, and 94% of the estimated spawning, rearing, and holding flows experienced 
by winter-run Chinook salmon on the Sacramento River. While collecting additional hydraulic measurements 
at higher discharges would have been preferable, this was not feasible on the Sacramento River due to safety 
concerns for field personnel. Nevertheless, we acknowledge that predicted depths, velocities, and habitat metrics 
will differ for other discharges.
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Our study used spatially variable flow resistance values in the models, which were based on a single ks value and 
local water depths (see Equation 2). The use of a single ks value was necessitated by a lack of continuous sediment 
grain-size data, which in the case of the Sacramento River, would have required detailed sediment sampling using 
a boat and dredge or similar sampler (Singer, 2008), which was beyond the scope of this study. Sediment patches 
can have a strong effect on the flow field (Nelson et al., 2015), most notably in the increased (decreased) veloc-
ities that can be associated with fine (coarse) sediment grains (Tonina et al., 2020). By using a single ks value, 
our modeling does not capture such small-scale flow variations induced by sediment patches. However, because 
the ks value was the same for each of the three model bathymetries, any errors introduced by not including 
spatially variable sediment grain sizes would have affected models developed from each of the three bathymetries 
and presumably in a similar manner. Furthermore, because including sediment patch information would likely 
improve velocity predictions, our model estimates provide a conservative estimate of the predictive capability 
that can be achieved in the more typical situation where spatially explicit grain size data are not available. Remote 
sensing methods for mapping continuous sediment grain size data using airborne lidar (Chardon et al., 2020) and 
UAS-based imagery (Woodget et al., 2018) offer a potential means for developing continuous grain size estimates 
on exposed gravel bars along large rivers. Methods for mapping submerged substrates using multibeam acoustic 
backscatter data (Buscombe et al., 2017) could provide an additional method of characterizing continuous bed 
sediment grain sizes on large rivers for the purpose of parameterizing 2D/3D models.

We found that the maximum detectable depth in the image-derived bathymetry imposed an important constraint 
on the accuracy of predicted depths obtained using 2D and 3D numerical models. All three of the source bathy-
metries underestimated the maximum pool depths beyond the bend apex, where depths exceeded 3 m (Figure 3). 
This 3 m threshold was exceeded by only 4% of the water depths we measured directly in the field. This result 
highlights the potential limitations for using image-based bathymetric DEMs to develop multi-dimensional flow 
models on large rivers. Passive optical methods may provide limited depth information in turbid, deep water, which 
would present an additional challenge for using image-based bathymetric DEMs as input for multi-dimensional 
flow models on large rivers. To overcome these limitations, a hybrid approach using multibeam echo sounders 
(MBES) in conjunction with remotely sensed bathymetry could provide a feasible alternative to relying solely on 
remotely sensed data for model development. Legleiter and Fosness (2019) developed an approach for identifying 
areas exceeding the maximum detectable depth within an image, which could help to improve image-based bathy-
metric DEM generation. Once the maximum depth is identified, field sampling strategies could be developed to 
fill in voids where image-based methods do not provide accurate depths. This type of hybrid approach is common 
on large rivers where bathymetric lidar data is supplemented with MBES data to fill in voids found in deeper 
water (Yurok Tribe, 2018), and a similar strategy could be adopted for passive optical approaches to mapping 
river bathymetry on large rivers for the purpose of constructing DEMs suitable for flow modeling.

Our study demonstrated the potential for using remotely-sensed bathymetry to develop multi-dimensional flow 
models for a 1.6 km reach of a large river. Although our results are encouraging, the potential for developing 
ecohydraulic models using remotely-sensed bathymetry at larger spatial scales has not been demonstrated. Of the 
three sources we evaluated, the airborne hyperspectral sensor appears most suitable for larger-scale model appli-
cations, due to the greater depth mapping accuracy and ability to cover large spatial extents using conventional, 
piloted aircraft. While the UAS hyperspectral data provided accurate hydraulic and habitat quality predictions, 
this platform is most suitable for reach-scale applications on the order of several km. The satellite multispec-
tral sensor has the potential to scale results up to larger spatial extents, though in our evaluation the resulting 
model predictions did not meet established benchmarks of hydraulic model performance. Scaling up results 
from reach-scale model applications to longer river segments could advance understanding of aquatic ecosystem 
processes at the riverscape scale (Carbonneau et al., 2012; Fausch et al., 2002; Torgersen et al., 2022).

5.  Conclusion
Numerical models are fundamental tools in basic and applied ecohydraulic investigations, but improved techniques 
are needed to increase the efficiency of two-dimensional (2D) and three-dimensional (3D) model construction 
across a broad range of applications. This study evaluated the potential to develop multi-dimensional numerical 
models for a large, gravel-bed river using three different remotely sensed river bathymetries as model input. We 
found that flow resistance values obtained during model calibration were lower than previously reported in the 
literature, perhaps as a result of the high resolution input bathymetry we derived from remotely sensed data. 
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Water depth errors in 2D and 3D models were similar to one another and were comparable to the uncertainty 
in the input source bathymetry. We observed generally good agreement between measured velocities and those 
predicted using 2D and 3D models. Predicted values of winter-run Chinook salmon (Oncorhynchus tshawyts-
cha) spawning and rearing habitat were similar across the three source bathymetries we evaluated, whereas 
bioenergetic predictions related to adult salmon holding habitat were more sensitive to velocity errors between 
the different bathymetric source DEMs. Our findings from the Sacramento River indicated that hyperspectral 
imagery acquired from piloted and uncrewed aircraft was more suitable than multispectral satellite imagery for 
use as bathymetric input for multi-dimensional flow models.

Data Availability Statement
The data supporting the analyses and results presented in this paper are publicly available and can be found in 
(Legleiter & Harrison, 2019b, 2022).
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